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In the nonstationary filtration of a compressible fluid, the distribution 
of the pressure isdescrlbed bY a quasi-llnear equation of parabolic type. 
A number of exact (similarity) solutions of this equation are known, corres- 
ponding to special classes of initial and boundary conditions. To effect a 
solution, approximate methods are generally used which, as a rule, do not 
have a rigorous foundation and which do not yield error estimates. 

In a number of cases one may obtain an approximate solution which is very 
close to the exact solution by taking for the distribution of the mass velo- 
cities of filtration those found from the solution of the llnearized prob- 
lem. 

This is true for both filtration that follows Darcy's law [I] as well as 
for nonlinear filtration [2]. The linearization is equivalent to replacing 
the variable coefficients in the equations of filtration by constants. 
Therefore, the error in linearization, like the error in certain other 
approximate methods, may be estimated by studying the dependence of the 
solution on the coefficients of the equations. Comparison theorems which 
determine the character of this dependence were obtained by Pirverdian for 
similarity solutions [3 and ~]. 

In the present paper we examine comparison theorems for one-dimensional 
filtration equations without the assumption of similarity. In addition, we 
examine estimates of the maximum principle type which allow one to determfne 
bounds on the change of the solution as a function of initial and boundary 
conditions. The results which are obtained are used to estimate the accu- 
racy of the linearized solution of the equations of gas fIZtr~tion. 

1. ~t',e depon4enoe ot the s o Z u ~ o u  on ~ l~l.tlL1, end I)ouJtda~r oond~- 
tlon|. The one-dimensional filtration of a compressible fluid in a uniform 
layer is described by the system 

kp ap a (rap) t a 
~ - ~ - ~ x = - - ~ 0 3 '  at = - - ~ - ~ ( ~ D  (1.1) 

H e r e  p l s  t h e  p r e s s u r e ,  0 t h e  d e n s i t y ,  ~ t h e  v i s c o s i t y  o f  t h e  f l u i d ,  
k ~ne p e r m e a b i l i t y ,  m t h e  p o r o s i t y  o f  t h e  r o c k ,  J t h e  m a s s  v e l o c i t y  
o f  f i l t r a t i o ~ a n d  s + 1 t h e  d i m e n s i o n  o f  t h e  s p a c e .  

The function ~ gives the filtration law and in its physical meaning 
increases monotonously and is odd. For filtration in accordance with D~rcy's 
law ~ O) ~- i. 
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We introduce new variables: the Lelbenzon function p(p) an@. q - -- x ' d  
instantaneous mass flow through a unit ar~leof the coordinate surface 

x - cons~). In the new variables, the system (I.i) takes on the form 

OP i kp Ox -- ~ (q / z s) ( P ( p ) - -  "-~ dp ) 

(A) o 
0 . 2 )  

O r - -  × (p)  z~ Ox ' x (P) = > 0  

One ~ eliminate q from Equations (1.2). The Isother~ filtration of 
a perfect gas which  obeys Darcy's law was investigated in [ 5 ]  by ,mane of 
the equation that is obtained. For this equation the ~,ax~ principle and 
the monotone dependence on initial and boundary conditions were proved, 
Later, these results were generalized in [6], where the existence and unique- 
ness of the solution of the basic problems was proved and where the proper- 
ties of solutions of the equation of nonatatlor~Lry gas filtration were inves- 
tigated. If one assumes a sufficient smoothness of the solution, then the 
n~um~rlnclple and the monotone dependence on initial and boundary condi- 
tions n~ay also be proved for the system of equations (1.2). 

The proof may be carried out by methods which are applied in [7~ for 
linear equations of parabolic type. 

For the problem which is studied in the rectangle D (0< a< x < b, O< ~< T), 
the follOWing asaertlons are true (by r we denote the boundary of the rect- 
ar~le D without the upper base t - T, a< x < ~): 

i.I. If pIr>/O, then P>/O everywhere in D ° ( a ~ x ~ b ,  O ~ t ~ T )  
1 . 2 .  I f  q l r ~ - 0 ,  t h e  q ~ O  e v e r y w h e r e  i n  .D °. 
1.3. Letthe function , , the inverse of ~ , satisfy the Lipschltz 

condition, and for y ~ ~ ~ 0 (~ is an ambitrary number) ~' (y) ~N~< co. 
Then the iLxlmum principle holds for the function P : if m~Plr~M , then 
m~P~<M e v e r y w h e r e  i n  D ° 

i.~. Let the function x(P) satisfy the Lipschitz condition. We assume 
that the functions Pl and Ps satisfy the system (1.2) and the cor~Itlon 

Then if 

then everywhere in 

(P* - -  P 2 ) r  >~ 0 ( t .3)  

3P2 - ~ - I ~  Mt -r, r ~ l 

Do 
P * - - P ~ O  (1.4) 

In the inequalities (1.3) and (1.4) the signs may be given opposite senses. 

1.5. If the coefficients of the system (1.2) satisfy the conditions 

O < n  < ~ '  (i) ~ N ~ <  oo, r ×' (e) I -.~ N <  oo 

then from m~qlr~M it follows that m~q~1W everywhere in D ° . 

The theorems which have been introduced allow one to crudely estimate the 
solutions in accordance with the initial and boundary conditions. 

2. O ~ ~  ~ 0  We ex~.e the functions .P* and ql satisfying 
a s y s t e m  o f  t h e  same form as  s y s t e m  (A) o f  E q u a t i o n s  ( 1 . 2 ) ,  b u t  Wi th  c e r -  
t a i n ,  other coefficients at ~, )" We shall call this system, sya~ ~) 
Subtractlng from the equations of system (B) the corresponding equations 
of system ~), we obtain 

o (P l  - -  P)  
ax  - q~ ( q l / x  8) - -  q~ ( q / z ' )  (2 . t )  

,9 (P1 - -  P) ×1 (P*) O(q, - -  q) .+ ×1 (P1) - -  x (P) Oq (2.2) 
Ot x s `9x x* Ox 
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We shall find conditions for which 21 --P2 >11 0 everywhere in the closed 
rectangle D ° . To do this we examine the function UI = (PI -- P) e-~t. We 
assume that it has a minimum at a certain point (xl, tl) ~ D~: (by D. we denote 
the rectangle D ° without the F part of the boundary). Using Equations 
(2.1) andS2.2), it is easy to convince oneself that at the minimum point 

OU1 ~1 (/01) (~2U1 g-~.t Ul (P1) - -  ~ (P1) °3q 
-- ~ Ox -}- Ot x s~p ' (q /x  s) Ox 2 ÷ x 

+ Z (Pl) -- X (A tO) e_at Oq 
x s Ox - -  ctU1 (2.3) 

We assume that in D. 

O ~ O q / a x ~ N < o %  × ( P ) ~ × I ( P )  (2.4) 

and that the function ~(p) satlsfles the Lipschltz condition 

] z (P1) - -  × (P2) I ~ C I P1 - -  Pe I (2.5) 

We take a > 6W/a'. Using Equation (2.3) and the fact that at the minimum 
point aU I/ot <0, a2U1/0x 2 ~ 0, it may be verified that U 1(xI, tl) ~0. 

Therefore the following assertion is valid. 

T h e o r e m 2.1. If conditions (2.4), (2.5) and 

(P, - -  P) Ir >~ o (2.6) 

are satisfied, then Pl -- P >t/ 0 everywhere in D ° . 

Indeed, in the opposite case the function U: has in D. a negative mini- 
mum for arbitrary a • which contradicts what was proved above. 

If in the second inequality (2.4), and likewise in inequality (2.6), the 
signs are changed, then the assertion of the theorem, clearly, also changes 
in the opposite directlon. The same occurs if the first condition (2.4) Is 
changed to 

- -  oc < - -  N ~ Oq / Ox ~.< O (2.7) 

Instead of the requirement of boundedness of the derivative 5q/~x , one 
may require that I aq / ax I ~ Nit r-I, r~ 0. The ~roof then carries through; 
it is sufficient tO change exp(--as)into exp[--aS ~). 

Theorem 2.1 has a simple physical interpretation. If 0q/0x ~ 0, then 
the pressure at every point of the layer increases, as follows from Equation 
(1.2). The magnitude of the total increase in pressure from the beginning 
of the process is determined by the initial and boundary conditions and by 
the speed of levelling of the perturbations, growing with an increase in the 
latter. Therefore, under the assumptions" that have been made, an increase 
of x~) which leads to speeding up of the levelling, increases the pressure 
increment. 

In many problems of filtration theory the flow rather than the pressure 
is prescribed on the boundary of the region. Using the same method of proof, 
one may in this case also obtain some comparison theorems. In this case, 
since the flow is a function of ~P/Sx , it is necessary to differentiate the 
original equation and to add some restrictions on the derivatives of the 
functions u~) and ~(J) . 

We shall compare system (O) , determined by the functions ~:(J: ) and 
~,~x), with the system ~) . Let the functions P: and qx satisfy this 
system. 

Differentiating the second equation of system ~) with respect to x 
and using the first equation of this system, we obtain 

( Io', ,o , )  (_k o, 
\ ~" / ot = × (p) ~ ¥ ~ + ×'(P)q~ ~ (2.8) 
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If one writes an analogous equation baaed on the system (C) and subtracts 
from it Equation (2.8), then after some transformations one finds 

Oq 
o (q. -- q) + [~ ,  (q~ / ~.) _ ~, (q / ~) ]  ot = g~' (qx / ~') ot 

[~ (qt -- q) s 0 (qt -- q) Za' (Pt) 
(P,) a= ~ = o~ + ~ q~ (q~ / =') x 

L .  

a (qx - -  q) ] [xx' (Pt) 
X a:~ "_ "-I- ~x (Px) L~x (P1) ~l. (ql / Xs) -- 
x' (P) x') ~ x~ -- aq ( ~ ,  (q / ] o~ ~- (P~ ( z ( P )  ~, (q I z #) ~ (2.9) 

We assume that 

aq / ~t ~ O, Oq / Ox ~ O, q > o (2.t0) 

0 ~ e ~ ~1" ( q / ~ )  ~ '  (q/zs) ~ N ~  < oo (2 . i / )  

z* (Pl) > /x  (P), zl" (Pl) / zl (Px) ~ u '  (P) / x (P), 0 ~ x'(P) / z (P) ~ N x (2.t2) 

and that the funetlon ~' (J) satlsfles the Llpschltz condltlon 

Iq~' (iD - -q: '  ff-)l ~ c .  11"1 - -  &l  (2.43) 

It is sufficient to require that the conditions (2.10) to (2.13) be tul- 
fllled for those values of the arguments which may be encountered in the prob- 
lem at hand. The range of variation of these varMles ~be espied 
beforeh~ by r ~ S  Of the theorems in Section I. We assume l~se that 
b~/b~ and ~q[/bx are bounded or that they have singularities of the form 
A~V-I 

T h e o r e m 2.2. Under the conditions (2.10) to (2.13) and the con- 
sequences of lqx -- q[P> 0 it follows that qx • q everywhere in Do . 

For a proof it is sufflcle~t to consider the function 

U2 ---- (ql -- q) exp (--~t r) 

and by means o£ the relation (2.9) to verify that it cannot have a negatlve 
minimum in D..  

Using v a r i u s  c~!natlons of the sl~s in inequalities (2.10) to (2.12), 
one may o b t a i n  v a r i o u s  m o d i f i c a t i o n s  or  Theorem 2 .2 .  

The c o n d i t i o n s  of Theorem 2.2  c o n t a i n  a l a r g e  number o~ requ~reamnts  
placed on the ~u~ctlona entering into the system ~ ) of equations and the 
solution of thls system. 

By means oC examples it Is not dlC£1cult to show that the requlr~ts of 
the  monotonous b e h a v i o r  of  the  s o l u t i o n s  and the  r e q u i r e m e n t s  x l ~  ~ > x  (P) 
and ~!' ( / ) ~  ~ ' ~ )  a r e  e s s ~ t i a l .  At the  same tL~e~ the r e ~ t "  
~i '  (Pl) / za (Pn)~ z '  (P) / z (P) which appears  because  of  the  method Of proof, 
turns out to ~e excessively restrlctlVe and not eatlsfM in a ~ o f  
important cases. Instead of t~Is requirement it would have been ~tural to 
require the smallness of x L' (Pl)/zl (P~) and z' (P) / z (P). 

A su£~Iclent result ~or a number o£ applications is obtained if one con- 
siders the function 

U:t = (qxV~, -- qV_b)e -~t, ~x > O, ~ ~ 0 (2.t4) 

Here |'~ (x) deno tes  the s o l u t i o n  to Equat ion  

d~ - -~V~'  7 ~ ( a ) =  t 
Obvious ly ,  the f u n c t i o n  I'~ (x) i s  p o s i t i v e ,  monotonously i n c r e l s £ n g  ~or 

> 0 and d e c r e l s i n 6  fo r  $ < 0 . 
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By the same means one may,show that Ua does not have a negative minimum 
in D. when conditions ~2.10~ and the following conditions are fulfilled 

0 < s % ¢~' (il) < ~ '  (h -.< S < oo f ~  i > ~ i ~  (2.16) 

×1' (P1) / ×1 (P1) < N1, ×' (P) / × (P) > - -  N 

×~ (P~) > / ×  (P) >/~×~ (P1), ~ > 0 (2.t7) 

and when Bt and ~ a r e  chosen  from c o n d i t i o n s  

Here 

~j. = max ('/2 N1EQ1,  0), 

13 = m a x  (1/2 N E Q ,  O, ~*), 

Q1 ~ max ql IF (2.18) 

Q = max q[p (2.t9) 

~J* .= V-1/4 s2beS-~ -~_ ~1-1~12 - -  rl-l[31sbS-1 __ 1/2sbs-1 (~1 >/ sbS-1) 

~* = 0 (~I < sbS-1) (2.20) 

T h e o r e m 2.3 . If conditions (2.10), (2.16),(2.17) and 

(qlVs,+~ - q)IF ~ 0 (2.2t) 

are satisfied for 81 and 8 , determined by (2.18) to (2.20), then 
(qiV~,+~--q)>/ 0 everywhere in D ° . 

In analogy with the above, one may obtain various modifications of Theo- 
rem 2.3 by changing the signs of the inequalities in conditions (2.10), 
(2.16) and (9.17). 

In the use of the comparison theorem, the monotonous behavior of at least 
one of the comparison solutions is required. In the elastic regime for 
linear filtration a~) - const , ~(J) m J , so that the system ~) turns 
out to be linear with constant coefficients. For the derivative solutions 
of such a system, the maximum principle is valid since the derivatives llke- 
wise satisfy an equation of parabolic type. 

For the generml case of system ~ ) one may prove analogous assertions. 

T h e o r e m 2.4 . Let conditions (1.5) be satisfied and likewise let 
the conditions 

Oq (x,  O) / Ox ~ O, q (a, t) --~ • a (t) >.~ O, q (b, t) = @b (t) ~ 0 

be satisfied. • a' (t) >/ 0, ~)b '(t) ~ 0 

Then bq/Sx ~< 0 everywhere in D ° . 

The assertions obtained by reversing the signs in the inequalities are 
likewise valid. 

3. ~ l e  of ~he e~ppllo&~lon ot ~he oo~a~l|on ~heo~em. Pirverdian 
estimated the accuracy of certain approximate methods by means of comparison 
theorems that he obtained in [3 and 4]. Using the theorem~ of Section 2, 
one may obtain f~-ther results. In particular, one may estimate the error 
caused by the linearlzatlon of the equations of gas filtration for plane 
radial flow. 

We consider the plane radial influx of a gas into a hole of radius a 
in a layer of radius A. We use a two term filtration law 

• 1 (D = / - ~  ?~ ,  / ~ O, ? = const ~ 0 (3.t) 

We a s s u m e t h a t t h e f u n c t i o n  ×1(P1) i n c r e a s e s  m o n o t o n o u s l y  as  i s  t h e  case  
for a perfect gas ~i' (p1)~0" Let there be no initial motion in the layer 

ql (~, 0) = 0, P1 (x, 0) = Pe ( 3 . ~  
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and let the influx into the hole start at time ~ - 0 with the flow 

qx (a, t) = (D (t), ¢ '  (t) >~ 0 (3.3) 

whereby  ¢(~} v e r y  r a p l d l l f  a t t a l n s  t h e  c o n a t a n t  v a l u e  0 a . Such a p rob l em  
is of fundamental importance for the establishment of methods of studying a 
layer by observln~ nonetationary influx. We assume that the far boundary of 
the layer is impermeable 

q~ (A, t) = 0 (3.4) 

For sufficiently large radius of the layer A, condition (3.4) holds only 
for extremely large times, and in the initial interval ,u~y be replaced by 
another condition. 

At the same tlme we consider the filtration of an elastic fluid for which 
×a = ×x (P0) = const, ~ (I) ------ / under the same initial and boundary conditions. 
By virtue of Theorem 2.4, the derivative aP x ] 0t ~ 0, so that PI ~ P0. 
Therefore 

×1 (P1) < xl (Po) = ×, ×1' (P1) ~ O, u '  (P) = 0 

%' (1) = 1 + 27i  > / t  = q~' (D (3.5) 

and by virtue of Theorem 2.2 

ql (x, t) ~< q (x, t) 

For sufficiently large t the fol,lowing formula holds for q (x ,  t )  

q (x, ¢) = ~Po exp (--x2/4xt) for a2 / u ~ t , ~  A~ / ~ (3.6) 

In the sequel we consider Just those times for which Formula (3.6) Is 
applicable. ~y means of the bound (3.5), the filtration law (3,1), ;and the 
first equation of  system ~ ) we obtain 

~ [  q~(x, t)]  ~ot 
(3.7) 

x 

We note that the last term in (3.7) is usally negligibly small. 

Now we ~ obtain, although crudely, a bound from below for q, (x,~) and 
from above for p,. In fact, for the interval of time t ~ T 

ql ~ ~o, ×l (PI) >/×1 (P~ (a, T)) 
We set 

Z : :  X ,  - Z (P1 (G, T)), q~ : :  (t + 2 7 @o/a) / (3.8) 

and denote by. q~ the solutlon of the problem with a and ~ deter~ned 
by relatlons 13.8) a~ the previous bou~ary cor~Itlons. ~eorem 2.2 is 
applicable to the functions ql and q.. Chooslr~ 8t and 8 as indicated 
above, we have 

(x / a)-~-O'q. (x, t) ~ qx (x, t) (3.9) 

(in the case conaldered a = I and V~ : (x/a)~). 

For ~ one ~ Rain ir~lcate an explicit solution which gives with 
sufflcle~{ accuracy the expression 

q. (x, t) ~ (I) oexp - -  ~ t + 2  (3.t0) 

For the usual ratio of parameters 8,~ I(F a . Hence $ H~y be set equal 
to zero, and for q~ one obtains the bound 
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(As before, the radius of the layer A is assumed to be very large). 
Using the bound (3.11), one may show that for sufficiently large t the 
following formula holds 

(Po - -  P1) / ~ o ~  i In t -b V ~ o / a  + C (3.12) 

The constant C may contain terms which weakly (logarithmically) depend 
on @o, while the angular coefficient is determined by Formula 

i : 1/2 [1 -- 1/4 ~1 In (A / a) (3. t3) 

with a relative accuracy not worse than ~8, in ~/a). The quantity A 
entered into (3.13) only because of the requirement t~M2/×,hence it may 
be replaced by another, arbitrary quantity which satisfies the same inequa- 
lity for all the times under consideration. For the usual values of para- 
meters the accuracy of Formula (3.13) is about one percent. 
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