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In the nonstationary filtration of a compressible fluid, the distribution
of the pressure 1s described by a quasi-linear equation of parabolic type.

A number of exact (similarity) solutions of this equation are known, corres-
ponding to speclal classes of initial and boundary conditions. To effect &
solutlion, approximate methods are generally used which, as a rule, do not
have a rigorous foundation and which do not yleld error estimates.

In a number of cases one may obtain an approximate solution which is very
close to the exact solution by taking for the distribution of the mass velo-

cities of filtration those found from the solution of the linearized prob-
lem.

This 1s true for both filtration that follows Darcy's law (1] as well as
for nonlinear filtration [2]. The linearization is equivalent to replacing
the variable coefficlients in the equations of filtration by constants.
Therefore, the error in linearization, like the error in certain other
approximate methods, may be estimated by studying the dependence of the
solution on the coefficients of the equations. Comparison theorems which
determine the character of this dependence were obtained by Pirverdian for
similarity solutions [3 and 4].

In the present paper wé examine comparison theorems for one-dimensional
filtration equations without the assumption of similarity. In addition, we
examine estimates of the maximum principle type which allow one to determine
bounds on the change of the solution as a function of initial and boundary
conditions. The results which are obtalred are used to estimate the accu-
racy of the linearized solution of the equations of gas filtration.

1. The dependsnce of the solutions on the initial and boundary oondi-
tions. The one-dimensional filtration of a compressible fluid in a uniform
layer 1s described by the system
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Here p 1s the pressure, p the density, u the viscosity of the fluid,
% une permeability, m the porosity of the rock, J the mass velocity
of filtration,and & + 1 the dimension of the space.

The function ¢ gives the filtration law and in 1ts physical meaning
increases mohotonously and 1s odd. FPor filtration in accordance with Darcy's

law @ () =1.
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We introduce new variables: the Leibenzgon function P{p) and g = ~ x*/f
(instantaneous mass flow through a unit angle of the coo nate surface
x = const). In the new varlables, the system (1.1) takes on the form

oP . €k
7 =01/ (P(P):'\—E'dp)
@ o ;( " (1.2)
®_ Lo _ (2 mb)\-
w0 =(S5%) >0

One may eliminate ¢ from Equations (1.2). The isothermal filtration of
a perfect gas which obeys Darcy's law was investigated in [5] by means of
the equation that is obtained. PFor this equation the maximum princ¢lple and
the monotone dependence on 1lnitial and boundary conditions were proved,
Later, these results were generalized in [6], where the existence and unique-
ness of the solution of the basic problems was proved and where the proper-
ties of solutions of the equation of nonstationary gas filtration were inves-~
tigated. If one assumes a sufflclent smoothness of the solution, then the
maximum principle and the monotone dependence on initial and boundary condi-
tions may also be proved for the system of equations (1.2).

The proof may be carried out by methods which are applied in [7] for
linear equations of parabolic type.

For the problem which is studled in the rectangle »D (O<ag<x<p, O< < T},
the following assertions are true (by I we denote the boundary of the rect-
angle D without the upper base ¢ = T, a<x<b):

1.1. If P!I"}O’ then P >0 everywhere in D° (a <z <{h, 0Kt <7T)

l1.2. 1Ir qh}&tm ¢ > 0 everywhere in D°

1.3. Letthe function y , the Ilnverse of o , satisfy ;he Lipschitz
condition, and for y >1 >0 (n is an arbitrary number) ¢’ (y) <N, < oo.

Then the maxlimum principle holds for the function p : if nzsgl’h,<gﬂl, then
mLPM everywhere 1n D°.

1.4, Let the function »x{p) satisfy the Lipschitz condition. We assume
that the functions p, and p, satisfy the system (1.2} and the condition

Py —Py)p>0 (1.3)
Then if
9Py

5 1< Mt r<1

then everywhere in p°
P, — P, >0 (1.4)

In the inequalities (1.3) and (1.4) the signs may be given opposite senses.
1.5. If the coeffleients of the system (1.2) satisfy the conditions

0N <O () <Ny < oo, [ P) IS N oo

then from m < q|p <M 1t follows that m < ¢ <X M everywhere in D°.

The theorems which have been introduced allow one to crudely estimate the
solutions in accordance with the initial and boundary conditions.

2. Ocmparison theorsms, We examine the functions p, and g, satisfying
a system of the same form as system (4) of Eguations (1.2), bu% with cer-
tain, other coefficlents x,(P,). We shall call this system, system (7)
Subtract from the equations of system (B) the corresponding equations
of system (4), we obtain

(P, — P)

T e @/ — 9/ @

P, —P) % (P)d(gr— @) | % (P1) —=(P)dg
at g oz + z ox 2.2)
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We shall find conditions for which P, — P, > 0 everywhere in the closed
rectangle p°. To do this we examine the function U, = (P, — P)e *l. We
assume that it has a minimum at a certaln point (x;, )) € D, (by D4 we denote
the rectan%le D° without the T part of the boundary). Using Equations

(2.1) and (2.2), 1t is easy to convince oneself that at the minimum point
U, t P  BUy | g %1 (Py) — % (Py) g
6t xs q),(q/ Z‘S) ’91‘2 [ CZIS ax h
Py —n (P 7]
4+ %Py 8%( ) e-—ata_q_aUl (2.3)
x xr
We assume that in D,
0<<dg/ 3z <N < oo, % (P) < ny (P) (2.4)
and that the function x(p) satisfiles the Lipschitz condition
[% (P)) — % (Py) | < C | Py — Py (2.5)

We take o > CN/a*. Using Equation (2.3) and the fact that at the minimum
point AU, /adt <0, 82U,/ dx® > 0, 1t may be verifiled that U, (z, ;) > 0.

Therefore the following assertion 1s valid.
Theorem 2.1. If conditions (2.4), (2.5) and
Py —P)|n >0 (2.6)

are satisfied, then P, — P > 0 everywhere in p°.

Indeed, in the opposite case the function ¢, has in p, a negative mini-
mum for arbitrary o , which contradicts what was proved above.

If in the second inequality (2.4), and likewlse in inequality (2.6), the
signs are changed, then the assertion of the theorem, clearly, also changes
in the opposite direction. The same occurs if the first condition (2.4) 1is

changed to
— o< —N<0g/0z<0 2.7

Instead of the requirement of boundedness of the derivative ag/3x , one
may require that |dq/dxr|< Ng™, r»? 0. The proof then carries through;
it 1s sufficient to change exXp(— q¢) into exp(— at*).

Theorem 2.1 has a simple physical interpretation. If 4¢/dx >0, then
the pressure at every point of the layer increases, as follows from Equation
(1.2). The magnitude of the total increase in pressure from the beginning
of the process is determined by the initial and boundary conditlons and by
the speed of levelling of the perturbations, growing with an lincrease in the
latter. Therefore, under the assumptions' that have been made, an increase
of n(p) which leads to speeding up of.the levelling, increases the pressure
increment.

In many problems of filtratlon theory the flow rather than the pressure
is prescribed on the boundary of the region. Using the same method of proof,
one may in this case also obtain some comparlson theorems. In this case,
since the flow 1s a function of ap/ax , 1t 1s necessary to differentlate the
original equation and to add some restrictions on the derivatives of the
functions u(p) and () .

We shall compare system (¢) , determined by the functilons % (Jl) and
x, (P, ), with the system (4) . Let the functions p, and ¢, sa Yo7y this
system.

Differentiating the second equation of system (4) with respect to x
and using the first equation of this system, we obtaln
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If one writes an analogous equation based on the system () and subtracts
from it Equation (2.8), then after some transformations one finds

3 (g, —
@ (an/ 0 28D gy (/9 — @ (g Y

2 (g — 2. (gy — P
=u,(P,)[ (q:w 9) _s; (qxaz 9 +:1 (;) ;)% (a1/ )X
2
x L0=D |4 oy [BEY 901729 —

P o Py) — % (P
o NI R e O} 2.9
We assume that
3g/9t>0, 089/3z<0, ¢>0 (2.10)
0<e< g/ <Y (g2 <Ny < o0 @.141)

% (P) 2% (P), % (P)/% (P) <x' (P)/x(P), O (P)/x(P)N, (2.12)
and that the function ¢‘(y) satisfies the Lipschitz condition
19" G —¢" G| S Cy L — 1al (2.13)

It is sufficient to require that the conditions (2.10) to (2.13) be ful~
filled for those values of the arguments which may be encountered in the prob-
lem at hand. Tne range of variation of these varlables may be estlimated
beforehand by means of the theorems in Section 1, We assume likewlse that
2¢/3¢t and 23g/ax are bounded or that they have singularities of the form
Aer-?

Theorem 2.2. Under the conditions (2.10) to (2.13) and the con-
sequences of |g; — ¢lp > 0 1t follows that g, > q everywhere in 1°.

For a proof it is sufficlent to consider the function
Us = (g1 — 9) exp (—at)

and by means of the relation {(2.9) to verify that it cannot have a negative
minimum in D,.

Using varils combinations cf the signs in inequalities (2.10) to (2.12),
one may obtain various modifications of Theorem 2.2.

The conditions of Theorem 2.2 contain a large number of requirements
placed on the functions entering into the system (4) of equations and the
solution of this system.

By means of examples 1t 1s not difficult to show that the requirements of
the monotonous behavior of the solutions and the requirements nﬂP,%}x r)
and ¢ ()< 9 () are essentlal, At the same time, the requiremen
*®i' (Py) / u, (P )& %' (P) /% (P) which appears because of the method of proof,
turns out kne excesslvely restrictive and not satisfied in a number of
important cuea. Instead of this requirement it would have been natural to
require the smallness of x,' (P,)/x; (Py)) and ' (P)/x (P).

A sufficient result for a number of applications 1s obtained 1f one con-
siders the function

Us= (qVp, — ¥V pe™, B>0, p>0 (2:44)
Here I (z) denotes the solution to Equation
dVg
T = P» i Var Vg (a) =1 (2.15)

Obviously, the function p( ) is positive, monotonously increasing for
p > O and decreasing for p < O .
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By the same means one may show that @, does not have a negative minimum
in D, when conditions (2.10) and the following conditions are fulfilled

0<e<o) () <¢ () SKE<C oo for /21, (2.16)
%y (Py) [ ny (Py) < Ny, ® Py /% (P)>—N
%y (Py) 2 % (P) 2= 7y (Py), n>0 (2.17)

and when g, and B are chosen from conditions

By = max ('/y N,EQ,, 0), Q1 = max ¢ |p (2.18)
B = max (/; NEQ, 0,B%,  Q = max g|p (2.19)
Here
ﬁ* — V1/4 s2h5-2 |- n-lﬁlz — n—lﬁlsbs—l e 17,8081 ([31 > sb"’l)
B =0 (By < b*Y) (2.20)
Theorem 2.3. If conditions (2.10), (2.16),(2.17) and
(Vg p— D lp>0 @.21)

are satisfied for B, and 8 , determined by (2.18) to (2,20), then
(4ﬂ7&+5'—'9);> Q0 everywhere in Do .,

In analogy with the above, one may obtain various modifications of Theo-
rem 2.3 by changing the signs of the inequalities in conditions (2.10),
(2.16) and (2.17).

In the use of the comparison theorem, the monotonous behavior of at least
one of the comparison solutlons 1s required. In the elastic regime for
linear filtration w(p) = const , o(J) = 4 , so that the system (4) turns
out to be linear with constant coefficients. For the derivative solutions
of such a system, the maximum principle 1is valild since the derivatives like-
wise satlsfy an equation of parabolic type.

For the general case of system (4) one may prove analogous assertions.

Theorenmn 2.4 . Let conditions (1.5) be satisfled and likewise let
the conditions

aq (z, 0) / 0z < 0, g, ) =D ()20, gG )=, () <O
be satisfied. D=0, ') SO
Then 3g/3x < O everywhere in Do,
The assertlions obtained by reversing the signs in the 1lnequalities are
likewlse valid.

3. Example of the application of the comparison theorem. Firverdian
estimated the accuracy of certain approximate methods by means of comparison
theorems that he cbtained in [3 and 4]. Using the theorems of 8ection 2,
one may obtain fwrther results. In particular, one may estimate the error
caused by the lincarization of the equations of gas filtration for plane
radlal flow,

We conslder the plane radial influx of a gas into & hole of radius g
in a layer of radius 4. We use a two term filltration law

opND=j+vy:h =0, y=const>0 (3.1)

We assume that the function %; (P;) Ilncreases monotonously as is the case
for a perfect gas y /' (P,) > 0. Let there be no initial motion in the layer

g (2, 0) =0, Py (z, 0) = P, (3.2)
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and let the influx into the hole start at time ¢ = O with the flow

7 (a, £) = @ (1), @H>0 (3.3)

whereby #(¢) very rapidly attains the constant value &, . Such & problem
1s of fundamental ilmportance for the establishment of me%hods of studying a
layer by observing nonstatlonary influx, We assume that the far boundary of
the layer is impermeable

74,8 =0 (3.4)

For sufficiently large radius of the layer /£, condition (3.4) holds only
for extremely large times, and in the initial interval may be replaced by
another condition.

At the same time we consider the filtration of an elastic fluld for which
%3 = %; (Py) = const, ¢ (/) = under the same initial and boundary conditlons.
By virtue of Theorem 2.4, the derivative dP,/ 0t <0, so that P, <P,
Therefore
% (P Sty Po) =% %' P) 20, #P)=0

¢ OH=1+2yy>1=9¢ () (3.5)
and by virtue of Theorem 2.2
Bt <<q(?
For sufficlently large ¢ the following formula holds for q(x, t)

g (z, ) = @, exp (—z%/4hxt) for a?/u<LtLA?/ % (3.6)

In the sequel we consider just those times for which Formula (?.6) is
applicable. By means of the bound (3.5), the filtration law (3.1), ‘and
first equation of system (4) we obtain

oC
on ]|

X
We note that the last term in (3.7) is usally negligibly small,

Now we may obtain, although crudely, a bound from below for g, (x,t) and
from above for p,. In fact, for the interval of time : 7T

the

n@y e t>] e Dyt (3.7

z T ~ 7A%mw (P, (@, 1)

g < @y, %y (Py) 2%y (P (¢, T))
We set
¥ == Ry = % (P (a, T)), ¢ = (1 4 2y Dy/a) § (3.8)

and denote by g, the solution of the problem with x and ¢ determined
by relaticns (3.5) and the previous boundary conditions. Theorem 2.2 ls
applicable to the functions g4, and g, . Choosing g, and g as indicated

above, we have _p-p
(x/a) Hge (2 ) S qu = 8) 3.9

(in the case considered g = 1 and V, = (z/a)?).

For ¢ one may again indicate an explicit solution which gives with
sufficient accuracy the expression

7s (& 1) = D exp| — 7o (142722)] (3.10)

For the usual ratio of parameters g, ~ 100, Hence B may be set equal
to zero, and for g, one obtains the bound

(2 e ZEL ) e (- )




Theorems for the equations of nonstatlonary filtration 227

(As vefore, the radius of the layer 4 1is assumed to be very large).
Using the bound (3.11), one may show that for sufflciently large ¢ the
following formula holds

(Py— P/ @y~ ilnt+ y®,/a+ C (3.12)

The constant (¢ may contain terms which weakly (logarithmically) depend
on §,, while the angular coefficlent is determlned by Formula

i=1,[1 — Y, B In(A/a) (3.13)

with a relative accuracy not worse than g,1n (A/b). The gquantity 4
entered into (3,13) only because of the requirement t <€ A%/ x, hence 1t may
be replaced by another, arbitrary quantity which satisfiles the same inequa-
1ity for all the times under consideration. For the usual values of para-
meters the accuracy of Formula (3.13) 1s about one percent.
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